1.冰箱温度传感器在哪里 冰箱内置温控器有什么类型

2.温度传感器的原理及应用

3.什么是温度传感器?

4.空调室内温度传感器的原理和故障处理

5.温度传感器的种类有哪些?

6.温度传感器怎么使用

温度传感器_温度传感器精度

温度传感器工作原理:金属膨胀原理设计的传感器

金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行信号转换。

扩展资料

温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

电阻传感:金属随着温度变化,其电阻值也发生变化,对于不同金属来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。

1、正温度系数:

①温度升高 = 阻值增加

②温度降低 = 阻值减少

2、负温度系数:

①温度升高 = 阻值减少

②温度降低 = 阻值增加

参考资料:

百度百科-温度传感器

冰箱温度传感器在哪里 冰箱内置温控器有什么类型

一、接触式温度传感器

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差。

二、非接触式

它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

扩展资料:

温度传感器的主要用途:

温度是反映物体冷热程度的物理量,是工农业生产过程中重要而通用的测量参数。温度测控在保证产品质量、提高生产效率、节能降耗、安全生产、促进国民经济发展等方面发挥着非常重要的作用。

由于温度测量的普遍性,温度传感器在各种传感器中排名第一,约占50%。温度传感器是通过改变物体的某些特性来间接测量温度的。许多材料和部件的特性随温度的变化而变化,因此有相当多的材料可以用作温度传感器。

温度传感器在膨胀、电阻、电容、电动势、磁性、频率、光学特性和热噪声等物理参数上随温度变化。随着生产的发展,新的温度传感器将继续出现。

百度百科—温度传感器

温度传感器的原理及应用

对于冰箱我们并不陌生,现在几乎家家户户都有冰箱,冰箱的结构和原理很复杂,其中冰箱温度传感器是调节冰箱的温度,冰箱温度传感器起着很重要的作用的。对于冰箱温度传感器你也是很好奇的吧?多多认识冰箱温度传感器,对于我们生活很有好处的。接下来,跟着小编的介绍,我们一起来认识一下吧。那么,冰箱温度传感器在哪里?

冰箱温度传感器在哪里

第一个传感器:在冷藏室蒸发器第二条管边(是冷藏蒸发器传感器为内藏式);

第二个传感器:在门上铰链盖内(是环境温度传感器);

第三个传感器:在冷藏室果菜盒上层搁架右方内胆边(是冷藏室空间传感器);

第四个传感器:在冷冻室第二层抽屉后的制冷管边(是冷冻室传感器);

第五个传感器:在软冷冻室蒸发器内(为内藏式)。

冰箱内置温控器有什么类型

1.波音B—196B温控器

波音温控器中的B—196B是波音电子最新出产的新品种的冰箱智能定时器,这一款定时器的使用性能稳定,使用的过程更加简洁,用户使用起来更加的方便快捷。这一款冰箱温控器的时间调节范围界定为停机15—140分钟,开机的时间界定在5—140分钟。它的延迟保护方式用的是延时上电方式进行冰箱压缩机的保护,有效的减少了冰箱电源对压缩机的冲击和损伤。

2.波音B—198A温控器

波音B—198A温控器和波音B—196B相比这一款的冰箱温控器价格相对的来说要高一些,波音B—198A温控器的节电功能能够根据冰箱停电和供电的时间来控制冰箱的停机和开机的时间。在寒冷的冬季,尽可能的缩短冰箱的开机时间,延长冰箱的停机时间,由此达到冰箱节能省电的目的。

3.知音冰箱温控器

知音冰箱温控器的价格相对于波音B—198A来说要便宜一些,知音冰箱温控器用的3C认证电源线,加上加厚的铜插孔,最后是能有效抗冲击的ABS阻燃外壳,有效的保护了冰箱压缩机的使用。在知音冰箱温控器中它的高精度大功率电位器,它的时间更加的精准,大功率的继电器,它的负载功率更大,使用更加的可靠耐用。

通过上文的详细介绍,相信大家对于冰箱温度传感器在哪里都已经比较熟悉了,冰箱温度传感器对于冰箱来讲是有很大的作用的,所以对于冰箱温度传感器的相关知识,我们应该好好了解一下,对于我们也是很有好处的。大家阅读文章后对于冰箱温度传感器在哪里有了很深刻的了解吧,希望我的介绍可以帮助到读者朋友。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:s://.to8to/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

什么是温度传感器?

温度传感器的原理是恒温器、双金属恒温器、热敏电阻;应用有冰箱、家用电器、医疗仪器和设备。

温度传感器的原理

1、恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

2、双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

3、热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数(PTC),并且它们的电阻随着温度的升高而增加。

温度传感器的应用

1、冰箱

当冰箱内的温度高于设定值时,制冷系统自动启动;而当温度低于设定值时,制冷系统又会自动停止。冰箱温度的控制是通过温度传感器实现的。

2、家用电器

温度传感器广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机冰箱、冷柜、热水器、饮水机、洗碗机、消毒柜、洗衣机、烘干机以及中低温干燥箱、恒温箱等场合的温度测量与控制等)。

医用/家用体温计,便携式非接触红外温度测温仪等等许多方面。

3、医疗仪器和设备

医学上应用各种传感器对人体温度、血压及腔内压力、血液及呼吸流量、心脑电波、脉搏及心音等进行高准确度的检测,及时反馈治疗结果,实现对患者的自动检测和监护。

空调室内温度传感器的原理和故障处理

为了实现最佳性能并确保系统稳健性,就必须要进行系统监控测量。其中一个必须的典型测量项目就是环境温度。使用简单的数字温度传感器进行该测量将为系统设计人员提供如下保证:组件正常工作;系统处于其性能或校准限值范围内;不会使用户遇到危险。

测量结束后,通常由系统中的微控制器对环境温度进行相应调整。系统监控微控制器可以改变风扇速度、关闭非必要系统进程或使系统智能进入省电模式。系统设计人员需全面正确地了解数字温度传感器规范以设计系统,并就测量结果取最佳措施。另外,全面了解传感器规范将确保在选择数字温度传感器器件时,可做到权衡得当。

当选择数字温度传感器(也称作串行输出温度传感器)时,应考虑的主要规范包括精度、分辨率、功耗、接口和封装。

温度传感器的种类有哪些?

在炎热的夏天,空调成为我们夏季必不可少的工具。尤其是南方的家庭里,几乎都会有空调,那么我们对空调又了解多少呢,空调不仅仅是我们表面看到的那些部件,里面也有很多零件来支持它的运作,这就要说到空调的温度传感器,空调的温度传感器有多少个,又有什么原理呢,如果发生故障我们如何处理呢,接下来为大家介绍下。

空调有3个温度传感器:

空调传感器的作用:

1、内机环境温度传感器:主要检测房间内的环境温度、控制空调的起停。

2、内机盘管传感器:主要检测内机管温、冬天的时候防冷风、给外机化霜。(有的是外机管温化霜)

夏天的时候、内机防冻结保护。

基本探头通常有三个:

一个是温度控制探头,搜索位置在空调室内机进风口处过滤网内(柜机在风机外面,挂机固定在蒸发器上);

一个是空调制热时放冷风探头,在室内机蒸发器上;

一个是空调制热自动除霜探头,在室外机冷凝器上。

打开内机的面板、拿出过滤网、看见一个黑色的小头附着在内机的蒸发器上面、此传感器就是内机的温度传感器。

如果打开电器盒盖子、和温度传感器并在一起、插入内机蒸发器管里的感温头就是管温传感器。不同的样式又有不同的位置。

挂机:室温传感器、打开内机的面板、拿下过滤网就能看见。

管温传感器、它和室温的并在一起、需要打开内机的盖子、拿下电器盒、在蒸发器里面插着。

柜机:室温传感器、打开下面的面板、在风轮的边上。

管温传感器、需要完全打开内机、在蒸发器里面插着。

  空调温度传感器原理及故障分析

空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。?NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。

1、?室内环温NTC作用:?室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值?+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。

2、室内盘管NTC?室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。?空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。

3、室外盘管NTC?制热化霜温度检测,制冷冷凝温度检测。?制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温NTC?控制室外风机的转速、冬季预热压缩机等。

4、排气NTC?使变频压缩机降频,避免外机过热,缺氟检测等。

5、吸气NTC?控制制冷剂流量,有步进电机控制节流阀实现。

6、故障分析?室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管NTC或室外化霜板。在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。

7、温度传感器都是和一个电阻串联以后,对5V(部分空调使用的+3.3V)电压进行分压,分压后的电压送入CPU内部。

由于空调温度传感器用的都是负温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时其阻值增大。所以CPU的输入电压规律就是;温度升高时,CPU的输入电压升高,温度降低时,CPU的输入电压随之降低。这一变化的电压进入CPU内部分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状态。

由于送到CPU的样电压会随温度高低变化而较大范围内变化,所以厂家在设计时,一般都以25度为准,将该样电压设计成电源电压的一半,以便给温度变化导致的电压变化孵出充分的余地。如果样电压设计得过高或过低,都将不能正常反映出当前的温度变化。由于R1、R2、R3各串联电阻的阻值是恒定的,如果不考虑CPU接口的内阻电路阻值(事实上该接口的内部阻值比较大,可以不考虑),那么要保证其A、B、C三个CPU输入点电压为2.5V左右(在25度下),RT1、RT2、RT3三个传感器就只能昼使用和三个串联电阻(R1、R2、R3)同阻值的传感器,否则该点电压压降偏离较多。

以上就是空调温度传感器的介绍,我们知道空调一般有三个温度传感器,也有它相应的作用,而主要是检测内机的管温好,在冬季时可以放冷风,基本上的探头也有三个,再来我们介绍了空调温度传感器的原理,大家可以了解下,最后也是它发生故障原因的分析,大家可以根据以上内容,当自己家的空调温度器发生故障的时候可以自己分析和解决,希望以上介绍对你有帮助。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:s://.to8to/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

温度传感器怎么使用

1、热电偶传感器

热电偶是一种感温元件,是一种仪表。它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeckeffect)。

2、热敏电阻传感器

热敏电阻传感器主要元件是热敏电阻,当热敏材料周围有热辐射时,它就会吸收辐射热,产生温度升高,引起材料的阻值发生变化。

3、电阻温度检测器(RTD)

RTD通常用铂金、铜或镍。这几种金属的电阻-温度关系如图所示,它们的温度系数较大,随温度变化响应快,能够抵抗热疲劳,而且易于加工制造成为精密的线圈。

RTD是目前最精确和最稳定的温度传感器。它的线性度优于热电偶和热敏电阻。但RTD也是响应速度较慢而且价格比较贵的温度传感器。因此RTD最适合对精度有严格要求,而速度和价格不太关键的应用领域。

4、IC温度传感器

(1)模拟集成温度传感器

集成传感器是用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC。模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,电路简单。

(2)数字输出传感器

数字温度传感器是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化和谐也取决于软件的开发水平。

扩展资料:

温度传感器的选用注意

1、被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送;

2、测温范围的大小和精度要求;

3、测温元件大小是否适当;

4、在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求;

5、被测对象的环境条件对测温元件是否有损害;

6、价格如保,使用是否方便。

参考资料:

百度百科-温度传感器

温度传感器怎么使用

 温度传感器怎么使用,温度传感器是指能感受一定的温度并能转换成可用输出信号的传感器,按测量方式可分为接触式和非接触式两大类,还有其他的分类。那么你知道温度传感器怎么使用吗?

 温度传感器怎么使用1

  1、温度传感器的使用方法与步骤

 接触式温度传感器在定制的时候要设计好安装方式,特别是对温度传感器的灵敏度要求比较高的尤其要注意与生产厂家的沟通,两只一模一样的温度传感器可能因安装方式的不同灵敏度相差甚远。比如测物体表面温度如果安装不到位,测到的往往是物体表面附近空气的温度。科学安装是得到准确温度数据的重要保证。

 其次,接触式温度传感器要严格保证在允许的量程范围内工作,长时间超出量程范围工作轻者会造成温度传感器引线外皮加速老化,重者会使芯片损坏。工作温度超限是造成温度传感器使用寿命不长的重要原因。超出量程范围有的传感器会集不到数据,有的集到的数据会有偏差。

 要注意所用的显示表或者集器等上级仪表能支持温度传感器的精度,否则高精度温度传感器不能发挥出高精度的优势。

 温度传感器要尽量保证导线没有接头,特别是输出电阻信号的温度传感器,线阻会造成数据偏差。

  2、温度传感器注意事项

 1、热惰性引入的误差:由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。

 2、绝缘变差而引入的误差:如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

 3、安装不当引入的误差:不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

 温度传感器怎么使用2

  温度传感器有哪几种

 我们每天都使用温度传感器来控制建筑物的温度、调节水温以及控制冰箱。温度传感器在许多其他行业应用中也至关重要,例如消费、医疗和工业电子产品。

 每个行业的应用可能有不同的温度传感需求。差异性包括测量对象(空气、质量或液体)、测量位置(内部或外部)以及测量的温度范围、测量方式分接触方式和非接触方式。

 现代电子产品中最常用的温度传感器有四种:热电偶、RTD(电阻温度检测器)、热敏电阻和基于半导体的集成电路 (IC)。按照响应性和准确度从高到低分别是:1、负温度系数 (NTC) 热敏电阻,2、电阻温度检测器 (RTD),3、热电偶,4、基于半导体的传感器

 本文重点介绍这四种主要类型的'温度传感器、每种类型的注意事项、优点和缺点。

  热敏电阻

 热敏电阻类似于 RTD,因为温度变化会导致可测量的电阻变化。热敏电阻通常由聚合物或陶瓷材料制成。在大多数情况下,热敏电阻更便宜,但也不如 RTD 准确。大多数热敏电阻有两线配置。热敏电阻具有特定类型的电阻器,它比其他温度传感器改变其物理电阻更大。

 NTC(负温度系数)热敏电阻是温度测量应用中最常用的热敏电阻。NTC 热敏电阻的电阻随着温度升高而降低。热敏电阻具有非线性的温度电阻关系。这需要进行重大修正才能正确解释数据。使用热敏电阻的一种常见方法(如图所示)是热敏电阻和固定值电阻器形成一个分压器,其输出由 ADC 数字化。

 它们的电阻与 RTD 一样指定,但热敏电阻呈现非线性电阻-温度图。因此,它可以在工作范围内为非常小的温度变化提供大的电阻变化。这使其成为一种高度灵敏的仪器,是高科技和设定点应用的理想选择。

 热敏电阻通常由陶瓷材料制成,例如覆盖在特定玻璃表面的锰、镍或钴的氧化物。与其他类型相比,它们的特殊优势是准确性、可重复性和对温度变化的快速响应。

 大多数热敏电阻具有负温度系数(NTC);也就是说,当温度升高时,它们的电阻会降低。但是,其中有几种类型具有正温度系数 (PTC)。

 NTC 热敏电阻在低温下提供更高的电阻。根据其 RT 表,随着温度的升高,电阻逐渐下降。由于每° C的电阻变化很大,微小的变化会准确反映。NTC热敏电阻的输出由于其指数性质而呈非线性;但是,它可以根据其应用进行线性化。玻璃封装热敏电阻的有效工作范围为 -50 至 250 ° C ,标准热敏电阻的有效工作范围为150 ° C。

 随着温度的变化,任何金属的电阻也会发生变化。这种电阻差异是 RTD 温度传感器的基础。RTD 是具有明确定义的电阻与温度特性的电阻器。铂是用于制造 RTD 的最常见和最准确的材料,当然也有镍和铜制成的温度传感器。图中所示电路是恒流源,用参考电压,一个放大器,一个PNP晶体管。

 铂 RTD 也称为 PRTD。它们通常在 0°C 时具有 100 Ω 和 1000 Ω 电阻。它们分别称为 PT100 和 PT1000。

 使用铂 RTD 是因为它们对温度变化提供近乎线性的响应,它们稳定且准确,它们提供可重复的响应,并且它们具有较宽的温度范围。RTD 因其准确性和可重复性而经常用于精密应用。

 RTD 元件通常具有较高的热质量,因此对温度变化的响应比热电偶慢。信号调理在 RTD 中很重要。它们还需要激励电流流过 RTD。如果知道这个电流,就可以计算出电阻。

 配置包括两线、三线和四线选项。当引线长度足够短以至于电阻不会显着影响测量精度时,两线选项很有用。三线制增加了一个承载激励电流的 RTD 探头。这提供了一种消除导线电阻的方法。四线是最准确的,因为单独的力和感测引线消除了线电阻的影响。MAX31865为每种配置提供专用的 RTD 信号调理电路,分辨率为 15 位,并提供加速 PT100 和 PT1000 RTD 设计的解决方案

  热电偶

 热电偶是最常用的温度传感器类型。它们用于工业、汽车和消费应用。热电偶是自供电的,可以在很宽的温度范围内工作,并且具有快速的响应时间。

 热电偶是通过将两条不同的金属线连接在一起制成的。这会导致塞贝克效应。塞贝克效应是两种不同导体的温差在两种物质之间产生电压差的现象。正是这种电压差可以测量并用于计算温度。

 有几种类型的热电偶由各种不同的材料制成,允许不同的温度范围和不同的灵敏度。不同的类型由指定的字母区分。最常用的是K型。

 热电偶的一些缺点包括测量温度可能具有挑战性,因为它们的输出电压小,需要精确放大,对长导线上的外部噪声的敏感性以及冷端。冷端是热电偶线与信号电路的铜迹线相遇的地方。这会产生另一个需要补偿的塞贝克效应,称为冷端补偿。

  基于半导体的温度传感器

 基于半导体的温度传感器通常集成到集成电路(IC) 中。这些传感器使用两个相同的二极管,它们具有温度敏感的电压与电流特性,用于监测温度的变化。它们提供线性响应,但在基本传感器类型中精度最低。这些温度传感器在最窄的温度范围(-70 ° C 至 150 ° C)内的响应速度也最慢。

 基于半导体的温度传感器 IC 有两种不同的类型:本地温度传感器和远程数字温度传感器。本地温度传感器是通过使用晶体管的物理特性测量其自身芯片温度的 IC。远程数字温度传感器测量外部晶体管的温度。

 本地温度传感器可以使用模拟或数字输出。模拟输出可以是电压或电流,而数字输出可以用多种格式,例如 IC、SMBus、1-Wire 和串行外设接口 (SPI)。本地温度传感器感应印刷电路板上的温度或其周围的环境空气。MAX31875是一款极小的本地温度传感器,可用于多种应用,包括电池供电应用。

 远程数字温度传感器通过使用晶体管的物理特性像本地温度传感器一样工作。不同之处在于晶体管远离传感器芯片。一些微处理器和 FPGA 包括一个双极感应晶体管,用于测量目标 IC 的管芯温度。

  日常生活中的温度感应

 温度传感器对日常生活至关重要。这些重要的技术可以测量物体或系统散发的热量。给出的测量值使我们能够从物理上感知温度的变化。温度传感器的一个重要作用是预防。 温度传感器检测何时出现设定的高点,从而有时间取预防措施。

 温度传感器怎么使用3

  如何正确使用温度传感器--温度传感器用途

 温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。

 温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。

  安装不当引入的误差

 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;

 热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

  如何正确使用温度传感器--挑选温度传感器

 如果要进行可靠的温度测量,首先就需要选择正确的温度仪表,也就是温度传感器。其中热电偶、热敏电阻、铂电阻(RTD)和温度IC都是测试中最常用的温度传感器。